Exercice Algorithme : Le Tri par minimum successif

Enoncé de l'Exercice:

Le Tri par minimum successif

Principe

Le tri par minimum successif est ce que l'on appelle un tri par sélection :
Pour une place donnée, on sélectionne l'élément qui doit y être positionné
De ce fait, si on parcourt la tableau de gauche à droite, on positionne à chaque fois le plus petit élément qui se trouve dans le sous tableau droit
Ou plus généralement : Pour trier le sous-tableau t[i..nbElements] il suffit de positionner au rang i le plus petit élément de ce sous-tableau et de trier le sous-tableau t[i+1..nbElements]

Exemple :

Pour trier101, 115, 30, 63, 47, 20[1], on va avoir les boucles suivantes :
i=1101, 115, 30, 63, 47, 20[1]
i=220, 115, 30, 63, 47, 101[1]
i=320, 30, 115, 63, 47, 101[1]
i=420, 30, 47, 63, 115, 101[1]
i=520,30, 47, 63, 115, 101[1]
Donc en sortie :20, 30, 47, 63, 101, 155[1]

Travail à Faire :
  1. Créer une fonction qui pour soit capable de déterminer le plus petit élément (en fait l'indice du plus petit élément) d'un tableau à partir d'un certain rang
  2. Créer l’algorithme du Tri par minimum successif

 1)
Fonction indiceDuMinimum (t : Tableau[1..MAX] d'Entier ; rang, nbElements : Naturel) : Naturel
Déclaration i, indiceCherche : Naturel
Début
   indiceCherche <-- rang
   Pour i <-- rang+1 à nbElements faire
      si t[i]
          indiceCherche <-- i
      Fin si
       Retourner indiceCherche
    Fin pour
Fin
 2)
L'algorithme de tri est donc :
procédure effectuerTriParMimimumSuccessif (E/S t : Tableau[1..MAX] d'Entier; E nbElements : Naturel)
Déclaration i,indice : Naturel
Début
Pour i <-- 1 à nbElements-1 faire
Indice <-- indiceDuMinimum(t,i,nbElements)
si i indice alors
echanger(t[i],t[indice])
Fin si
Fin pour
Fin

Leave a Reply

    ads